Target-following framework for symmetric cone programming
نویسندگان
چکیده
We extend the target map, together with the weighted barriers and the notions of weighted analytic centers, from linear programming to general convex conic programming. This extension is obtained from a novel geometrical perspective of the weighted barriers, that views a weighted barrier as a weighted sum of barriers for a strictly decreasing sequence of faces. Using the Euclidean Jordan-algebraic structure of symmetric cones, we give an algebraic characterization of a strictly decreasing sequence of its faces, and specialize this target map to produce a computationally-tractable target-following algorithm for symmetric cone programming. The analysis is made possible with the use of triangular automorphisms of the cone, a new tool in the study of symmetric cone programming. As an application of this algorithm, we demonstrate that starting from any given any pair of primal-dual strictly feasible solutions, the primal-dual central path of a symmetric cone program can be efficiently approximated. 2000 Mathematics Subject Classification. 90C25; 90C51; 52A41.
منابع مشابه
T-algebras and linear optimization over symmetric cones
Euclidean Jordan-algebra is a commonly used tool in designing interiorpoint algorithms for symmetric cone programs. T -algebra, on the other hand, has rarely been used in symmetric cone programming. In this paper, we use both algebraic characterizations of symmetric cones to extend the target-following framework of linear programming to symmetric cone programming. Within this framework, we desi...
متن کاملGlobal convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملPrimal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملWaveform Design using Second Order Cone Programming in Radar Systems
Transmit waveform design is one of the most important problems in active sensing and communication systems. This problem, due to the complexity and non-convexity, has been always the main topic of many papers for the decades. However, still an optimal solution which guarantees a global minimum for this multi-variable optimization problem is not found. In this paper, we propose an attracting met...
متن کاملAssociative and Jordan Algebras, and Polynomial Time Interior-Point Algorithms for Symmetric Cones
We present a general framework whereby analysis of interior-point algorithms for semidefinite programming can be extended verbatim to optimization problems over all classes of symmetric cones derivable from associative algebras. In particular, such analyses are extendible to the cone of positive semidefinite Hermitian matrices with complex and quaternion entries, and to the Lorentz cone. We pro...
متن کامل